nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.26 76-82
Ⅱ型肺泡上皮细胞在脓毒症急性肺损伤中的研究现状
基金项目(Foundation): 国家自然科学基金项目(82272201); 浙江省脓毒症诊疗中医药多学科交叉创新团队资助项目
邮箱(Email): lzq640815@163.com;
DOI:
摘要:

脓毒症急性肺损伤(SALI)是脓毒症的一种常见并发症,发病率高,患者预后差,且目前对SALI发病机制的了解尚不充分。对SALI分子机制的进一步探索可能有助于SALI的靶向治疗,改善患者预后。本文阐述了Ⅱ型肺泡上皮细胞在SALI中的病理生理机制与Ⅱ型肺泡上皮细胞在SALI诊疗过程中的潜在临床意义,以及Ⅱ型肺泡上皮细胞在SALI中的研究关键问题及克服这些问题的可能策略。深入研究Ⅱ型肺泡上皮细胞的分子机制和病理生理学特征,不仅能够深化对SALI病理机制的认识,还可为开发靶向性治疗策略提供科学依据。

Abstract:

Sepsis-associated acute lung injury(SALI) is a common complication of sepsis, characterized by a high incidence and poor prognosis. However, the underlying pathophysiological mechanisms of SALI remain incompletely understood. Further exploration of the mechanisms driving SALI may facilitate targeted therapeutic strategies and improve patient outcomes. This article reviews the pathophysiological mechanism of type Ⅱ alveolar epithelial cells(AEC Ⅱ) in SALI and the potential clinical significance of type Ⅱ alveolar epithelial cells in SALI diagnosis and treatment, as well as the key problems in the study of type Ⅱ alveolar epithelial cells in SALI and the possible strategies to overcome these problems. The in-depth investigation of molecular mechanisms and pathophysiological characteristics in AEC Ⅱ not only elucidates the underlying pathogenesis of SALI, but also provides a scientific foundation for developing targeted therapeutic strategies.

参考文献

[1]FONT M D,THYAGARAJAN B,KHANNA A K.Sepsis and septic shock-basics of diagnosis,pathophysiology and clinical decision making[J].Med Clin North Am,2020,104(4):573-585.

[2]LIU D,HUANG S Y,SUN JH,et al.Sepsis-induced immuno suppression:Mechanisms,diagnosis and current treatment options[J].Mil Med Res,2022,9(1):56.

[3]韩雪妹,王日兴.脓毒症相关持续性炎症-免疫抑制-分解代谢综合征的研究进展[J].感染、炎症、修复,2021,22(3):171-174.

[4]VINCENT J L,MARSHALL J C,NAMENDYS-SILVA S A,et al.Assessment of the worldwide burden of critical illness:The intensive care over nations(ICON)audit[J].Lancet Respir Med,2014,2(5):380-386.

[5]VAN VUGHT L A,KLOUWENBERG P M K,SPITONI C,et al.Incidence,risk factors,and attributable mortality of secondary infections in the intensive care unit after admission for sepsis[J].JAMA,2016,315(14):1469-1479.

[6]MOHSIN M,TABASSUM G,AHMAD S,et al.The role of mitophagy in pulmonary sepsis[J].Mitochondrion,2021,59:63-75.

[7]SAKR Y,MOREIRA C L,RHODES A,et al.The impact of hospital and ICU organizational factors on outcome in critically ill patients:Results from the extended prevalence of infection in intensive care study[J].Crit Care Med,2015,43(3):519-526.

[8]林洪远,姚咏明,从脓毒症术语的变迁认识脓毒症发生本质[J].感染、炎症、修复,2018,19(3):131-135.

[9]SPADARO S,FOGAGNOLO A,CAMPO G,et al.Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients[J].Crit Care,2021,25(1):74.

[10]MASON R J.Biology of alveolar typeⅡcells[J].Respirology,2006,11(Suppl S):12-15.

[11]DE SOUZA XAVIER COSTA N,DA COSTA SIGRIST G,SCHALCH A S,et al.Lung tissue expression of epithelial injury markers is associated with acute lung injury severity but does not discriminate sepsis from ARDS[J].Respir Res,2024,25(1):129.

[12]HERZOG EL,BRODY AR,COLBY T V et al.Knowns and unknowns of the alveolus[J].Proc Am Thorac Soc,2008,5(7):778-782.

[13]DOBBS L G,JOHNSON M D,VANDERBILT J,et al.The great big alveolar TI cell:Evolving concepts and paradigms[J].Cell Physiol Biochem,2010,25(1):55-62.

[14]WU Y,MA J,WOODS P S,et al.Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibodyconjugated lipoplexes[J].J Control Release,2015,203:140-149.

[15]WHITSETT J A,WERT S E and WEAVER T E.Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease[J].Annu Rev Med,2010,61:105-119.

[16]MARCONETT C N,ZHOU B,RIEGER M E,et al.Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation[J].PLoS Genet,2013,9(6):e1003513.

[17]HUANG X,CAO M,XIAO Y.Alveolar macrophages in pulmonaryalveolar proteinosis:origin,function,and therapeutic strategies[J].Front Immunol,2023,14:1195988.

[18]AUTILIO C,PEREZ-GIL J.Understanding the principle biophysics concepts of pulmonary surfactant in health and disease[J].Arch Dis Child Fetal Neonatal Ed,2019,104(4):F443-F451.

[19]MATTHAY M A.Resolution of pulmonary edema:Thirty years of progress[J].Am J Respir Crit Care Med,2014,189(11):1301-1308.

[20]SERRANO A G,PEREZ-GIL J.Protein-lipid interactions and surface activity in the pulmonary surfactant system[J].Chem Phys Lipids,2006,141(1-2):105-118.

[21]BERNHARD W.Lung surfactant:Function and composition in the context of development and respiratory physiology[J].Ann Anat,2016,208:146-150.

[22]REID K B.Functional roles of the lung surfactant proteins SP-A and SP-D in innate immunity[J].Immunobiology,1998,199(2):200-207.

[23]TAKAHASHI H,SANO H,CHIBA H,et al.Pulmonary surfactant proteins A and D:Innate immune functions and biomarkers for lung diseases[J].Curr Pharm Des,2006,12(5):589-598.

[24]KUROKI Y,TAKAHASHI M,NISHITANI C.Pulmonary collectins in innate immunity of the lung[J].Cell Microbiol,2007,9(8):1871-1879.

[25]BARKAUSKAS C E,CRONCE M J, RACKLEY C R,et al.Type 2alveolar cells are stem cells in adult lung[J].J Clin Invest,2013,123(7):3025-3036.

[26]ROCK J R,HOGAN B L.Epithelial progenitor cells in lung development,maintenance,repair,and disease[J].Annu Rev Cell Dev Biol,2011,27:493-512.

[27]KOSMIDER B,LIN C R,VLASENKO L,et al.Impaired nonhomologous end joining in human primary alveolar typeⅡcells in emphysema[J].Sci Rep,2019,9(1):920.

[28]HOGAN B L,BARKAUSKAS C E,CHAPMAN H A,et al.Repair and regeneration of the respiratory system:C omplexity,plasticity,and mechanisms of lung stem cell function[J].Cell Stem Cell,2014,15(2):123-138.

[29]HAN S,BUDINGER G R S,GOTTARDI C J.Alveolar epithelial regeneration in the aging lung[J].J Clin Invest,2023,13 3(20):e170504.

[30]BOS L D J,WARE L B.Acute respiratory distress syndrome:Causes,pathophysiology,and phenotypes[J].Lancet,2022,400(10 3 5 8):1145-1156.

[31]BACHOFEN M,WEIBEL E R.Structural alterations of lung parenchyma in the adult respiratory distress syndrome[J].Clin Chest Med,1982,3(1):35-56.

[32]FEIN A,GROSSMAN R F, JONES J G,et al.The value of edema fluid protein measurement in patients with pulmonary edema[J].Am J Med,1979,67(1):32-38.

[33]ENGLERT J A,MACIAS A A,AMADOR-MUNOZ D,et al.Isoflurane Ameliorates Acute Lung Injury by Preserving Epithelial Tight Junction Integrity[J].Anesthesiology,2015,123(2):377-3 88.

[34]THORLEY A J,GRANDOLFO D,LIM E,et al.Innate immune responses to bacterial ligands in the peripheral human lung--role of alveolar epithelial TLR expression and signalling[J].PLoS One,2011,6(7):e21827.

[35]CIESIELSKA A,MATYJEK M,KWIATKOWSKA K.TLR4 and CD 14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J].Cell Mol Life Sci, 2021,78(4):1233-1261.

[36]KAGAN J C,SU T,HORNG T,et al.TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta[J].Nat Immunol,2008,9(4):361-368.

[37]ZANONI I,OSTUNI R,MAREK L R,et al.CD14 controls the LPSinduced endocytosis of Toll-like receptor 4[J].Cell,2011,147(4):868-880.

[38]WANG Z, GUO Z, WANG X, et al.Inhibition of EZH2 ameliorates sepsis acute lung injury(SALI)and non-small-cell lung cancer(NSCLC)proliferation through the PD-L1 pathway[J].Cells,2022,11(24):395 8.

[39]THORLEY A J, FORD P A,GIEMBYCZ M A,et al.Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar typeⅡepithelial cells and macrophages[J].J Immunol,2007,178(1):463-473.

[40]YANG J,WANG Y,LIU H,et al.C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1,occludin and claudin-4expression[J].Toxicol Mech Methods,2017,27(4):293-297.

[41]SIM T Y,HARITH H H,THAM C L,et al.The protective effects of a synthetic geranyl acetophenone in a cellular model of TNF-alpha-induced pulmonary epithelial barrier dysfunction[J].Molecules,2018,23(6):1355.

[42]YI L,CHEN Y,ZHANG Y,et al.Deleting fibroblast growth factor 2in macrophages aggravates septic acute lung injury by increasing M1polarization and inflammatory cytokine secretion[J].Mol Biomed,2024,5(1):50.

[43]GAO M,ZHU X,GAO X,et al.Kaempferol mitigates sepsis-induced acute lung injury by modulating the SphK1/S1P/S1PR1/MLC2 signaling pathway to restore the integrity of the pulmonary endothelial cell barrier[J].Chem Biol Interact,2024,398:111085.

[44]DEJANA E,TOURNIER-LASSERVE E,WEINSTEIN B M.The control of vascular integrity by endothelial cell junctions:Molecular basis and pathological implications[J].Dev Cell,2009,16(2):209-221.

[45]LI X,JAMAL M,GUO P,et al.Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathway s[J].Biomed Pharmacother,2019,118:109363.

[46]SCHIFANELLA L,ANDERSON J,WIEKING G,et al.The Defenders of the alveolus succumb in COVID-19 pneumonia to SARS-CoV-2 and necroptosis,pyroptosis,and panoptosis[J].J Infect Dis,2023,227(11):1245-1254.

[47]ZHANG T,LI M,ZHAO S,et al.CaMK4 promotes acute lung injury through NLRP3 inflammasome activation in typeⅡalveolar epithelial cell[J].Front Immunol,2022,13:890710.

[48]SHI J,ZHAO Y,WANG Y,et al.Inflammatory caspases are innate immune receptors for intracellular LPS[J].Nature,2014,514(7521):187-192.

[49]WANG K,SUN Q,ZHONG X,et al.Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J].Cell,2020,180(5):941-955,e920.

[50]LIU X,ZHANG Z,RUAN J,et al.Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J].Nature,2016,535(7610):153-158.

[51]LI H,NIU X,SHI H,et al.circHECTD1 attenuates apoptosis of alveolar epithelial cells in acute lung injury[J].Lab Invest,2022,102(9):945-956.

[52]LI K,HE Z,WANG X,et al.Apigenin C-glycosides of microcos paniculata protects lipopolysaccharide induced apoptosis and inflammation in acute lung injury through TLR4 signaling pathway[J].Free Radic Biol Med,2018,124:163-175.

[53]WARE L B,MATTHAY M A.Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratorydistress syndrome[J].Am J Respir Crit Care Med,2001,163(6):1376-1383.

[54]EISNER M D,PARSONS P,MATTHAY M A,et al.Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury[J].Thorax,2003,58(11):983-988.

[55]RYU J K,KIM S J,RAH S H,et al.Reconstruction of LPS transfer cascade reveals structural determinants within LBP,CD 14,and TLR4-MD2 for efficient LPS recognition and transfer[J].Immunity,2017,46(1):38-50.

[56]WARE L B,KOYAMA T,BILLHEIMER D D,et al.Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury[J].Chest,2010,137(2):288-296.

[57]PARSONS P E,EISNER M D,THOMPSON B T,et al.Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury[J].Crit Care Med,2005,33(1):1-6,discussion 230-232.

[58]BERSTEN A D,DOYLE I R,DAVIDSON K G,et al.Surfactant composition reflects lung overinflation and arterial oxygenation in patients with acute lung injury[J].Eur Respir J,1998,12(2):301-308.

[59]KERR C L,VELDHUIZEN R A,LEWIS J F.Effects of high-frequency oscillation on endogenous surfactant in an acute lung injury model[J].Am J Respir Crit Care Med,2001,164(2):237-242.

[60]ZENG L,YANG X T,LI H S,et al.The cellular kinetics of lung alveolar epithelial cells and its relationship with lung tissue repair after acute lung injury[J].Respir Res,2016,17(1):164.

[61]SHAO Y,ZHOU F,HE D,et al.Overexpression of CXCR7 promotes mesenchymal stem cells to repair phosgene-induced acute lung injury in rats[J].Biomed Pharmacother,2019,109;1233-1239.

[62]LI Y,SHI X,YANG L,et al.Hypoxia promotes the skewed differentiation of umbilical cord mesenchymal stem cells toward type II alveolar epithelial cells by regulating microRNA-145[J].Gene,2017,630:68-75.

[63]ZHOU Y,LI P,GOODWIN A J,et al.Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury[J].Crit Care,2019,23(1):44.

[64]QIN H,ZHAO A.Mesenchymal stem cell therapy for acute respiratory distress syndrome:From basic to clinics[J].Protein Cell,2020,11(10):707-722.

[65]IONESCU L,BYRNE R N,VAN HAAFTEN T,et al.Stem cell conditioned medium improves acute lung injury in mice:In vivo evidence for stem cell paracrine action[J].Am J Physiol Lung Cell Mol Physiol,2012,303(11):L967-L977.

[66]BERNARD O,JENY F, UZUNHAN Y,et al.Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling[J].Am J Physiol Lung Cell Mol Physiol,2018,314(3):L360-L371.

[67]CHEN X X, TANG L,HAN Z H,et al.Coculture with bone marrow-derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide-stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin-1modulating the Toll-like receptor-4 signal pathway[J].Mol Med Rep,2019,19(3):1891-1902.

[68]KRASNODEMBSKAYA A,SONG Y, FANG X,et al.Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37[J].Stem Cells,2010,28(12):2229-2238.

[69]GUPTA N,KRASNODEMBSKAYA A,KAPETANAKI M,et al.Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia Coli.pneumonia[J].Thorax,2012,67(6):533-539.

[70]SUNG D K,CHANG Y S,SUNG S I,et al.Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta-defensin-2 via toll-like receptor 4 signalling[J].Cell Microbiol,2016,18(3):424-436.

[71] RUDD K E,JOHNSON S C,AGESA K M,et al.Global,regional,and national sepsis incidence and mortality,1990-2017:Analysis for the Global Burden of Disease Study[J].Lancet,2020,395(10219):200-211.

[72]NOVA Z, SKOVIEROVA H,STRNADEL J,et al.Short-term versus long-term culture of A549 Cells for evaluating the effects of lipopolysaccharide on oxidative stress,surfactant proteins and cathelicidin LL-37[J].Int J Mol Sci,2020,21(3):1148.

[73]CHARY A,GROFF K,STUCKI A O,et al.Maximizing the relevance and reproducibility of A549 cell culture using FB S-free media[J].Toxicol In Vitro,2022,83:105423.

[74]HAN X,NA T,WU T,et al.Human lung epithelial BEAS-2B cells exhibit characteristics of mesenchymal stem cells[J].PLoS One,2020,15(1):e0227174.

[75]NIGHOT M,AL-SADI R,GUO S,et al.Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by tolllike receptor 4/myeloid differentiation primary response 88(MyD88)activation of myosin light chain kinase expression[J].Am J Pathol,2017,187(12):2698-2710.

[76]CHUANG C Y,CHEN T L,CHERNG Y G,et al.Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondriondependent pathway[J].Arch Toxicol,2011,85(3):209-218.

[77]ZHAO J,LI X,ZOU M,et al.miR-135a inhibition protects A549 cells from LPS-induced apoptosis by targeting Bcl-2[J].Biochem Biophys Res Commun,2014,452(4):951-957.

[78]PEI H,CHEN J, QU J,et al.S100A9 exacerbates sepsis-induced acute lung injury via the IL17-NFkappaB-caspase-3 signaling pathway[J].Biochem Biophys Res Commun,2024,710:149832.

[79]HUANG C,ZHENG H,HE W,et al.Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide[J].Biochem Biophys Res Commun,2016,474(1):83-90.

[80]LI S, GUO L,QIAN P,et al.Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells[J].Cell Physiol Biochem,2015,36(6):2403-2417.

[81]DING Z,WU X,WANG Y,et al.Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3beta/Nrf2 pathway[J].Biomed Pharmacother,2020,132:110827.

基本信息:

DOI:

中图分类号:R459.7;R563

引用信息:

[1]陈剑明,张敏,陶张斌等.Ⅱ型肺泡上皮细胞在脓毒症急性肺损伤中的研究现状[J].感染、炎症、修复,2025,26(02):76-82.

基金信息:

国家自然科学基金项目(82272201); 浙江省脓毒症诊疗中医药多学科交叉创新团队资助项目

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文